3.9.75 \(\int \frac {1}{(d+e x) (f+g x) \sqrt {a+b x+c x^2}} \, dx\) [875]

Optimal. Leaf size=182 \[ \frac {e \tanh ^{-1}\left (\frac {b d-2 a e+(2 c d-b e) x}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c d^2-b d e+a e^2} (e f-d g)}-\frac {g \tanh ^{-1}\left (\frac {b f-2 a g+(2 c f-b g) x}{2 \sqrt {c f^2-b f g+a g^2} \sqrt {a+b x+c x^2}}\right )}{(e f-d g) \sqrt {c f^2-b f g+a g^2}} \]

[Out]

e*arctanh(1/2*(b*d-2*a*e+(-b*e+2*c*d)*x)/(a*e^2-b*d*e+c*d^2)^(1/2)/(c*x^2+b*x+a)^(1/2))/(-d*g+e*f)/(a*e^2-b*d*
e+c*d^2)^(1/2)-g*arctanh(1/2*(b*f-2*a*g+(-b*g+2*c*f)*x)/(a*g^2-b*f*g+c*f^2)^(1/2)/(c*x^2+b*x+a)^(1/2))/(-d*g+e
*f)/(a*g^2-b*f*g+c*f^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.15, antiderivative size = 182, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 3, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {974, 738, 212} \begin {gather*} \frac {e \tanh ^{-1}\left (\frac {-2 a e+x (2 c d-b e)+b d}{2 \sqrt {a+b x+c x^2} \sqrt {a e^2-b d e+c d^2}}\right )}{(e f-d g) \sqrt {a e^2-b d e+c d^2}}-\frac {g \tanh ^{-1}\left (\frac {-2 a g+x (2 c f-b g)+b f}{2 \sqrt {a+b x+c x^2} \sqrt {a g^2-b f g+c f^2}}\right )}{(e f-d g) \sqrt {a g^2-b f g+c f^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((d + e*x)*(f + g*x)*Sqrt[a + b*x + c*x^2]),x]

[Out]

(e*ArcTanh[(b*d - 2*a*e + (2*c*d - b*e)*x)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x + c*x^2])])/(Sqrt[c*d^2
 - b*d*e + a*e^2]*(e*f - d*g)) - (g*ArcTanh[(b*f - 2*a*g + (2*c*f - b*g)*x)/(2*Sqrt[c*f^2 - b*f*g + a*g^2]*Sqr
t[a + b*x + c*x^2])])/((e*f - d*g)*Sqrt[c*f^2 - b*f*g + a*g^2])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 974

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> Int[ExpandIntegrand[(d + e*x)^m*(f + g*x)^n*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &
& NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && (IntegerQ[p] || (ILtQ[m, 0] &&
ILtQ[n, 0])) &&  !(IGtQ[m, 0] || IGtQ[n, 0])

Rubi steps

\begin {align*} \int \frac {1}{(d+e x) (f+g x) \sqrt {a+b x+c x^2}} \, dx &=\int \left (\frac {e}{(e f-d g) (d+e x) \sqrt {a+b x+c x^2}}-\frac {g}{(e f-d g) (f+g x) \sqrt {a+b x+c x^2}}\right ) \, dx\\ &=\frac {e \int \frac {1}{(d+e x) \sqrt {a+b x+c x^2}} \, dx}{e f-d g}-\frac {g \int \frac {1}{(f+g x) \sqrt {a+b x+c x^2}} \, dx}{e f-d g}\\ &=-\frac {(2 e) \text {Subst}\left (\int \frac {1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac {-b d+2 a e-(2 c d-b e) x}{\sqrt {a+b x+c x^2}}\right )}{e f-d g}+\frac {(2 g) \text {Subst}\left (\int \frac {1}{4 c f^2-4 b f g+4 a g^2-x^2} \, dx,x,\frac {-b f+2 a g-(2 c f-b g) x}{\sqrt {a+b x+c x^2}}\right )}{e f-d g}\\ &=\frac {e \tanh ^{-1}\left (\frac {b d-2 a e+(2 c d-b e) x}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c d^2-b d e+a e^2} (e f-d g)}-\frac {g \tanh ^{-1}\left (\frac {b f-2 a g+(2 c f-b g) x}{2 \sqrt {c f^2-b f g+a g^2} \sqrt {a+b x+c x^2}}\right )}{(e f-d g) \sqrt {c f^2-b f g+a g^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.77, size = 207, normalized size = 1.14 \begin {gather*} -\frac {2 e \sqrt {-c d^2+e (b d-a e)} \tan ^{-1}\left (\frac {\sqrt {c} (d+e x)-e \sqrt {a+x (b+c x)}}{\sqrt {-c d^2+e (b d-a e)}}\right )}{\left (c d^2+e (-b d+a e)\right ) (-e f+d g)}-\frac {2 g \sqrt {-c f^2+b f g-a g^2} \tan ^{-1}\left (\frac {\sqrt {c} (f+g x)-g \sqrt {a+x (b+c x)}}{\sqrt {-c f^2+g (b f-a g)}}\right )}{(e f-d g) \left (c f^2+g (-b f+a g)\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((d + e*x)*(f + g*x)*Sqrt[a + b*x + c*x^2]),x]

[Out]

(-2*e*Sqrt[-(c*d^2) + e*(b*d - a*e)]*ArcTan[(Sqrt[c]*(d + e*x) - e*Sqrt[a + x*(b + c*x)])/Sqrt[-(c*d^2) + e*(b
*d - a*e)]])/((c*d^2 + e*(-(b*d) + a*e))*(-(e*f) + d*g)) - (2*g*Sqrt[-(c*f^2) + b*f*g - a*g^2]*ArcTan[(Sqrt[c]
*(f + g*x) - g*Sqrt[a + x*(b + c*x)])/Sqrt[-(c*f^2) + g*(b*f - a*g)]])/((e*f - d*g)*(c*f^2 + g*(-(b*f) + a*g))
)

________________________________________________________________________________________

Maple [A]
time = 0.13, size = 327, normalized size = 1.80

method result size
default \(\frac {\ln \left (\frac {\frac {2 a \,e^{2}-2 b d e +2 c \,d^{2}}{e^{2}}+\frac {\left (e b -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {a \,e^{2}-b d e +c \,d^{2}}{e^{2}}}\, \sqrt {c \left (x +\frac {d}{e}\right )^{2}+\frac {\left (e b -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+\frac {a \,e^{2}-b d e +c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{\left (d g -e f \right ) \sqrt {\frac {a \,e^{2}-b d e +c \,d^{2}}{e^{2}}}}-\frac {\ln \left (\frac {\frac {2 a \,g^{2}-2 b f g +2 c \,f^{2}}{g^{2}}+\frac {\left (b g -2 c f \right ) \left (x +\frac {f}{g}\right )}{g}+2 \sqrt {\frac {a \,g^{2}-b f g +c \,f^{2}}{g^{2}}}\, \sqrt {\left (x +\frac {f}{g}\right )^{2} c +\frac {\left (b g -2 c f \right ) \left (x +\frac {f}{g}\right )}{g}+\frac {a \,g^{2}-b f g +c \,f^{2}}{g^{2}}}}{x +\frac {f}{g}}\right )}{\left (d g -e f \right ) \sqrt {\frac {a \,g^{2}-b f g +c \,f^{2}}{g^{2}}}}\) \(327\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)/(g*x+f)/(c*x^2+b*x+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/(d*g-e*f)/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(x+d/e)+2*((a*e^2-b*d*
e+c*d^2)/e^2)^(1/2)*(c*(x+d/e)^2+(b*e-2*c*d)/e*(x+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x+d/e))-1/(d*g-e*f)/((
a*g^2-b*f*g+c*f^2)/g^2)^(1/2)*ln((2*(a*g^2-b*f*g+c*f^2)/g^2+(b*g-2*c*f)/g*(x+f/g)+2*((a*g^2-b*f*g+c*f^2)/g^2)^
(1/2)*((x+f/g)^2*c+(b*g-2*c*f)/g*(x+f/g)+(a*g^2-b*f*g+c*f^2)/g^2)^(1/2))/(x+f/g))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(g*x+f)/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^2 + b*x + a)*(g*x + f)*(x*e + d)), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 447 vs. \(2 (166) = 332\).
time = 70.44, size = 1952, normalized size = 10.73 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(g*x+f)/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

[-1/2*((c*d^2 - b*d*e + a*e^2)*sqrt(c*f^2 - b*f*g + a*g^2)*g*log((8*a*b*f*g - 8*a^2*g^2 - (b^2 + 4*a*c)*f^2 -
(8*c^2*f^2 - 8*b*c*f*g + (b^2 + 4*a*c)*g^2)*x^2 - 4*sqrt(c*f^2 - b*f*g + a*g^2)*sqrt(c*x^2 + b*x + a)*(b*f - 2
*a*g + (2*c*f - b*g)*x) - 2*(4*b*c*f^2 + 4*a*b*g^2 - (3*b^2 + 4*a*c)*f*g)*x)/(g^2*x^2 + 2*f*g*x + f^2)) + (c*e
*f^2 - b*e*f*g + a*e*g^2)*sqrt(c*d^2 - b*d*e + a*e^2)*log((8*a*b*d*e - 8*a^2*e^2 - (b^2 + 4*a*c)*d^2 - (8*c^2*
d^2 - 8*b*c*d*e + (b^2 + 4*a*c)*e^2)*x^2 + 4*sqrt(c*d^2 - b*d*e + a*e^2)*sqrt(c*x^2 + b*x + a)*(b*d - 2*a*e +
(2*c*d - b*e)*x) - 2*(4*b*c*d^2 + 4*a*b*e^2 - (3*b^2 + 4*a*c)*d*e)*x)/(e^2*x^2 + 2*d*e*x + d^2)))/((c^2*d^2*e
- b*c*d*e^2 + a*c*e^3)*f^3 - (c^2*d^3 + a*b*e^3 - (b^2 - a*c)*d*e^2)*f^2*g + (b*c*d^3 + a^2*e^3 - (b^2 - a*c)*
d^2*e)*f*g^2 - (a*c*d^3 - a*b*d^2*e + a^2*d*e^2)*g^3), -1/2*(2*(c*d^2 - b*d*e + a*e^2)*sqrt(-c*f^2 + b*f*g - a
*g^2)*g*arctan(-1/2*sqrt(-c*f^2 + b*f*g - a*g^2)*sqrt(c*x^2 + b*x + a)*(b*f - 2*a*g + (2*c*f - b*g)*x)/(a*c*f^
2 - a*b*f*g + a^2*g^2 + (c^2*f^2 - b*c*f*g + a*c*g^2)*x^2 + (b*c*f^2 - b^2*f*g + a*b*g^2)*x)) + (c*e*f^2 - b*e
*f*g + a*e*g^2)*sqrt(c*d^2 - b*d*e + a*e^2)*log((8*a*b*d*e - 8*a^2*e^2 - (b^2 + 4*a*c)*d^2 - (8*c^2*d^2 - 8*b*
c*d*e + (b^2 + 4*a*c)*e^2)*x^2 + 4*sqrt(c*d^2 - b*d*e + a*e^2)*sqrt(c*x^2 + b*x + a)*(b*d - 2*a*e + (2*c*d - b
*e)*x) - 2*(4*b*c*d^2 + 4*a*b*e^2 - (3*b^2 + 4*a*c)*d*e)*x)/(e^2*x^2 + 2*d*e*x + d^2)))/((c^2*d^2*e - b*c*d*e^
2 + a*c*e^3)*f^3 - (c^2*d^3 + a*b*e^3 - (b^2 - a*c)*d*e^2)*f^2*g + (b*c*d^3 + a^2*e^3 - (b^2 - a*c)*d^2*e)*f*g
^2 - (a*c*d^3 - a*b*d^2*e + a^2*d*e^2)*g^3), -1/2*((c*d^2 - b*d*e + a*e^2)*sqrt(c*f^2 - b*f*g + a*g^2)*g*log((
8*a*b*f*g - 8*a^2*g^2 - (b^2 + 4*a*c)*f^2 - (8*c^2*f^2 - 8*b*c*f*g + (b^2 + 4*a*c)*g^2)*x^2 - 4*sqrt(c*f^2 - b
*f*g + a*g^2)*sqrt(c*x^2 + b*x + a)*(b*f - 2*a*g + (2*c*f - b*g)*x) - 2*(4*b*c*f^2 + 4*a*b*g^2 - (3*b^2 + 4*a*
c)*f*g)*x)/(g^2*x^2 + 2*f*g*x + f^2)) - 2*(c*e*f^2 - b*e*f*g + a*e*g^2)*sqrt(-c*d^2 + b*d*e - a*e^2)*arctan(-1
/2*sqrt(-c*d^2 + b*d*e - a*e^2)*sqrt(c*x^2 + b*x + a)*(b*d - 2*a*e + (2*c*d - b*e)*x)/(a*c*d^2 - a*b*d*e + a^2
*e^2 + (c^2*d^2 - b*c*d*e + a*c*e^2)*x^2 + (b*c*d^2 - b^2*d*e + a*b*e^2)*x)))/((c^2*d^2*e - b*c*d*e^2 + a*c*e^
3)*f^3 - (c^2*d^3 + a*b*e^3 - (b^2 - a*c)*d*e^2)*f^2*g + (b*c*d^3 + a^2*e^3 - (b^2 - a*c)*d^2*e)*f*g^2 - (a*c*
d^3 - a*b*d^2*e + a^2*d*e^2)*g^3), -((c*d^2 - b*d*e + a*e^2)*sqrt(-c*f^2 + b*f*g - a*g^2)*g*arctan(-1/2*sqrt(-
c*f^2 + b*f*g - a*g^2)*sqrt(c*x^2 + b*x + a)*(b*f - 2*a*g + (2*c*f - b*g)*x)/(a*c*f^2 - a*b*f*g + a^2*g^2 + (c
^2*f^2 - b*c*f*g + a*c*g^2)*x^2 + (b*c*f^2 - b^2*f*g + a*b*g^2)*x)) - (c*e*f^2 - b*e*f*g + a*e*g^2)*sqrt(-c*d^
2 + b*d*e - a*e^2)*arctan(-1/2*sqrt(-c*d^2 + b*d*e - a*e^2)*sqrt(c*x^2 + b*x + a)*(b*d - 2*a*e + (2*c*d - b*e)
*x)/(a*c*d^2 - a*b*d*e + a^2*e^2 + (c^2*d^2 - b*c*d*e + a*c*e^2)*x^2 + (b*c*d^2 - b^2*d*e + a*b*e^2)*x)))/((c^
2*d^2*e - b*c*d*e^2 + a*c*e^3)*f^3 - (c^2*d^3 + a*b*e^3 - (b^2 - a*c)*d*e^2)*f^2*g + (b*c*d^3 + a^2*e^3 - (b^2
 - a*c)*d^2*e)*f*g^2 - (a*c*d^3 - a*b*d^2*e + a^2*d*e^2)*g^3)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (d + e x\right ) \left (f + g x\right ) \sqrt {a + b x + c x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(g*x+f)/(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral(1/((d + e*x)*(f + g*x)*sqrt(a + b*x + c*x**2)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(g*x+f)/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{\left (f+g\,x\right )\,\left (d+e\,x\right )\,\sqrt {c\,x^2+b\,x+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((f + g*x)*(d + e*x)*(a + b*x + c*x^2)^(1/2)),x)

[Out]

int(1/((f + g*x)*(d + e*x)*(a + b*x + c*x^2)^(1/2)), x)

________________________________________________________________________________________